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Abstract 

Recently Bolton, Pedit and Woodward (1995) described a class of harmonic surfaces (dubbed 
superconformal) in complex projective space corresponding to the affine Toda held equations for 
SU,,+l This article gives a complete description of the conditions for the existence of superconfor- 
mal I-tori and doubly periodic Toda solutions in terms of differentials on the spectral curve. This 
shows that in c=P” for IZ > 3 one cannot expect to find superconformal 2-tori even though there 
should be plenty of doubly periodic Toda solutions. 
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1. Introduction 

Recently there has been a great deal of interest in the construction of harmonic surfaces 
in symmetric spaces associated to integrable systems (for example [4,5,8.12,16]). In partic- 
ular, Bolton et al. [4] used the term superconformal to describe harmonic surfaces in CP” 
associated to the 2D (aftine) Toda field equations. By their definition a superconformal map 
is one whose harmonic sequence is orthogonally periodic. Directly from this one deduces 
that each superconformal2-torus determines a doubly periodic solution of the elliptic Toda 
equations 
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where z is a coordinate on the uniformising space C of the torus and each SO, . . . , s,, is 
a strictly positive real-valued function of z, Z. Geometrically the ‘fields’ Sj arise from the 
differential d9 of the harmonic map, which can be represented by a Lie algebra valued 
l-form over the domain. Taking the domain to be a 2-torus enables us to have globally 
defined functions for the fields (otherwise we would have an equation in (1. 1)-forms). 
Conversely, given a doubly periodic solution to Eqs. (1) one integrates to lind a Toda frame 
for a harmonic map R* + UP”: the obstruction to this map being doubly periodic is the 
monodromy of the frame around the periods of the Toda solution. 

The main purpose of this note is to complete the study made in [ 15,161 by determining the 
conditions required for the existence of superconformal2-tori. In particular, it is shown that 
these amount to a system of equations which appear to be over determined for n 2 2 unless 
one considers tori with extra symmetry. This explains the ‘dearth of examples’ referred to 
in [5]. 

The strategy is to use the fact that every doubly periodic solution of Eqs. (1) belongs to 
the (strictly larger) class of solutions possessing a spectral curve in the sense of [ 151. This 
class is usually referred to as the class of solutions of finite type. The aim is to distinguish 
inside this class first the doubly periodic Toda solutions and then all those whose Toda 
frame has trivial monodromy around both Toda periods. In Section 3 it is shown that this 
monodromy is measured by the scalar Baker function for the Toda solution. Consequently 
we are able (in Sections 4 and 5) to give expression to the periodicity conditions purely in 
terms of differentials on the curve. 

From this we can make a naive parameter count for the number of free parameters 
available to satisfy these conditions. This count shows that while there are always enough 
free parameters to expect doubly periodic Toda solutions (indeed 2y - 1 free parameters 
to satisfy 2p - 4 conditions when the spectral curve has genus p) there are in general not 
enough free parameters to obtain superconformal tori except into CP’ (which are actually 
the non-conformal maps, see [2,3,14]) and CP*. Maps which have an S’ symmetry have 
slightly fewer conditions and may also provide tori in UP”. 

The final two sections deal with the important point of how one determines what the 
spectral curve of a Toda solution is. From the point of view of [ 151 the solution space given 
by dressing is a union of orbits of the infinite-dimensional abelian group of higher flows-it 
is shown that the solutions of finite type are precisely those with finite-dimensional orbit for 
this group and that this orbit is essentially the Jacobian of the spectral curve. Appendix A 
relates this to another point of view, expressed in [7,12], which constructs a spectral curve 
using ‘polynomial Killing fields’. It also explains that the algebra of polynomial Killing 
fields is essentially the coordinate ring of the spectral curve used above, thus relating the two. 

2. Superconformal maps and the Toda equations 

This section summarises the link between superconformal tori and the elliptic Toda 
equations (following [4,6]), and explains why every doubly periodic solution arises from 
the dressing construction. To begin we recall the notion of a primitive harmonic map into 



G/T (which is essentially the same as the term ‘t-primitive map’ used in [4]) where T is 
the maximal torus of diagonal matrices in G = SU,,+ 1. 

The full flag manifold G/T is an n + 1 -symmetric space, i.e. T is the fixed point subgroup 
of a periodic automorphism u on G which has period II + I. This automorphism. called 
the Coxeter automorphism, is defined by U(K) = Ada-’ where 0-I is the diagonal matrix 
diag( 1. w. . . co’*) and w is the y1 + I-th root of unity exp(%ri/(rl + I )). This induces 
an automorphism on the Lie algebra ~1 = ~I[,,+I which is completely characterised by its 
eigenspace decomposition of the complexification !I’: we write this as 

Here tC is the complexification of t. the Lie algebra of T. The subspaces (1k are the 
eigenspaces for eigenvalue 13~. In particular $11 consists of all the matrices in .:[,,+I of 
the form 

0 * 
* 

/. I3 . 
* 

* 0 

where * denotes a possible non-zero entry. An element of $71 is called c~~Yic if all these 
entries are non-zero and it is readily seen that every cyclic matrix is, up to scaling, in the 
Ad Tc-orbit of the cyclic matrix A which has l’s in every non-zero entry. 

Let t* denote the complex conjugate transpose of an element in 0’. The conjugation 
< F-+ -c* commutes with u and the splitting $1 = t + 111 is reductive when I*,’ denotes 
!I I + . + :I,, Now recall (from e.g. [lo]) that the Maurer-Cartan form B for G/ T is 
the endomorphism of vector bundles which identifies the tangent bundle T (G/ T) with the 
bundle [III] = G XT IU. where T acts adjointly on 111. 

Throughout this article T’ will denote a 2-torus viewed as the quotient of the complex 
plane @ by a lattice: since harmonic maps from a Riemann surface depend only on the 
conformal structure induced by the metric we need not be more precise. We will say a 
real-analytic map 4 : U’ + G/T is primitive if $*@ (‘.O) takes values in [cl11 = G x7 !II. 
One knows from [l] that all primitive maps are equi-harmonic (i.e. harmonic with respect 
to any G-invariant metric on G/T) provided the order of 11 is greater than 2 (i.e. II > I ). 

Now let ~1 : G/T + CP” be one of the II + 1 possible homogeneous projections. 
Then one also knows from [l] that nk o 4 is harmonic whenever @ is primitive. This allows 
Bolton et al. [4] to characterise the superconformal tori in CP” as follows. A hnnmic~ 
torus C#Q : 8’ + CP” is superconformal (f and only if @k = xk 0 C#J ,frw ,some primiti\~c 
4 : 8” + G/T for which $*p(‘.‘) is cyclic. 

Recall from e.g. [4] that given smooth solutions .s, to (1) (say, throughout C) there is, for 
each < E @*, a unique Gc-valued solution 0, to 

4b;‘aq = -.s-la.s - C.S-IAS. @,‘a@, = .s-‘as + <-‘sA*s-‘. (2) 
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normalised by Q{(O) = Id, where 8 = a/az and s = diag(so, . . , s,,). Moreover a5 is 
G-valued on /{I = 1. The form of (2) is such that, for each [ of unit modulus, @,‘a@, 

takes values in tC + ~11 with cyclic Al-component. It follows that the map $J~ : c + G/T 
defined by $F = @c T is primitive and each nk o Gr gives a superconformal plane in CP”. 
The frame @ = @I is called a Toda frame for $J = 41 and @t is called an extended Toda 
frame. 

Theorem 1 [4]. Let @J : T* -+ G/T be primitive with cyclic $*/?(‘.‘), then 4 = OT for 
some doubly periodic @ : C + G satisfying (2) with positive definite s. The functions sj are 
doubly periodic with the same periods as U2 but @ may change by a factor O? I around these 
periods. Moreover; 0 is uniquely determined by Cp and the coordinate z, up to translation of 
z or resealing z by some power 0.f’~. 

Moreover it is shown in [4] that, up to scaling, distinct solutions of (1) lead to distinct 
primitive maps 4. The next aim is to describe how every doubly periodic solution of Eqs. (1) 
arises from the dressing construction. 

2.1. The dressing construction 

For each value of z, 7, we can think of @S as an element of a loop group of maps S’ + G. 
Indeed we may always choose @c to be v-equivariant, that is, ~(0~) = awe, since the 
right-hand side of (2) has this property in the loop algebra. The dressing construction used 
in [9] requires that we introduce the following loop groups. 

Let C = Cl U C2 be the union of two circles in the c-plane, centred at { = 0 and with 
radii t and e-l, respectively (where 0 < E < 1). We consider C to be the boundary of two 
regions on the Riemann sphere: the union of discs I and the annulus E. Define Ac(GC, u) 
to be the group of real-analytic u-equivariant maps C -+ GC (we may think of such a 
map as a pair (gl , ~2) of v-equivariant loops in Cc). We will be primarily interested in the 
subgroup 

A(G, u) = (g E Ac(GC, u): g = 21, 

where j denotes g(c-‘)*-I. It is a corollary of a result in [ 161 that A(G, u) has a global 
decomposition (which we will call its Iwasawa decomposition) into the product of the 
following three subgroups: 

AE = {g E A(G, u): boundaries of holomorphic mapsg : E -+ GC]; 
Al = (g E A(G, u): boundaries of holomorphic maps g : I --f GC 

with g(0) = Id]; 
D = {(s, s-l) : s E exp(it) i.e. s is diagonal, constant and positive definite). 

The decomposition asserts that every g E A(G. u) has a unique factorisation g = udn 
where u E AE, d E D and n E AI. 

The dressing construction uses this factorisation to ‘dress up’ the frame @p’ = exp( -z< A 

+ ?(-’ A*) which corresponds to the vacuum solution of (I), where every .yj = 1. 
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Theorem 2 [ 161. Let g E A(G, u) und consider @iO’ as N A(G. v)-vnlued,function of ;. in. 
Then g@p’ = @,dn according to the lwasawa decomposition u,here @c satisfies (2),fi)r 

some possibly non-trivial s given by d = (s. s-’ ). The entries .s,; of the diagonal mcrtri.xs .s 
sati.++ ( I). 

Indeed whenever Qr satisfies (2) and s E AC ( GC. u) the AE-factor of g@< (which shall 
be denoted by ~$00 also satisfies (2) for a possibly different Toda solution. The set of such 
extended frames forms an orbit of the group A 1, D generated by D and A,. In fact: 

Theorem 3. Every doubly periodic solution of ( I ) possesses an extended Todo @me of 
the,form gC@@),for some 0 < c -C 1 rrnd some ,g E A[,I~. 

This is a consequence of results from [4,8,9] (compare [ 171). It will be useful to briefly 
sketch the proof. 

First we require some definitions and notation. The Lie algebra A (il. U) of A (G, U) splits 
into the direct (vector space) sum of Lie subalgebras 

corresponding to the Iwasawa decomposition of A(G, u). For any positive integer k let 
AI C AE(~, u) denote the subspace consisting of Laurent polynomials of degree ( k. 
Now define the vector subspace 

A = AI + b + AI(% u) c A(o, u) 

and,forany ($. 0 in A,definee(t) = exp[(-jg. -,-t)].Thispresentsus witha2-parameter 
subgroup of A(G, u). According to the Iwasawa decomposition we may write 

6) = @(<)d(<)n(O. (3) 

Observe that 0 (c) is trivial unless 6 has a non-trivial component in A 1. For any c in A, 
Q(e) satisfies equations very much like (2). Let us write the Fourier series for < (which 
lives on Cl) as 6 = <I [ + <O + . then one readily shows that @ (0 satisfies 

@-‘a@ = -s-‘&Y - ts-‘4,X, @-‘a@ = s-‘as - <-‘s&s-‘. (4) 

where s comes from the factor d(c) = (s, .r-I) in (3). When 61 is cyclic these equations 
are equivalent to (2), but if {I is not cyclic their compatibility equations are a variation on 
the finite lattice Toda equations (see for example [ 161). 

Now, to prove Theorem 3 we recall from [4] that every doubly periodic Toda solution is of 
jinite ape. This means it has an extended Toda frame @c which, for some (i, q) : R’ * A,, 
with m E I mod (n + I), satisfies 

dq = [v, @;‘d@,l with - iv = <ms-’ As + CM-‘8 Ins + . (5) 

When this occurs we can readily verify that. for < = -i<‘-“~l;=o, 0(c) satisfies (4) with 
61 = s-‘(O)As(O). Since this is exp(it)-conjugate to A we deduce Q(t) = gb@(<A). for 
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some t, by applying [9, Theorem 3.71. I leave it to the reader to show that @([A) = cP(‘) 
to complete the proof of Theorem 3. 

3. Baker functions 

Given a doubly periodic solution s to (1) it need not be that the (normalised) extended 
frame 0~ be periodic for any value of [. To understand its monodromy around periods of 
s we can use the matrix and scalar Baker functions from [ 151. 

Set & = Qrs-’ and define q = 2a Ins, then it is a simple matter to verify that 

$-la+ = -q - (A. (6) 

For any matrix s of solutions to (1) there is always a formal series solution of (6) with 
Fourier series in < of the form 

P(z, 2; 0 = exp(-z[A)(Zd + O(<-I)) (7) 

We will call P a matrix Bukerfunction for q whenever it satisfies (6) and has Fourier series 
(7) convergent for ]< 1 1 CC’. When it exists there is more than one matrix Baker function 
for each q. Let K2 denote the group of all y E P’(C2, Cc) which extend holomorphically 
to l{-‘I 5 E, with ~~(00) = Id, such that y2Ay;’ = A. 

Lemma 1. When s comesfrom the dressing construction there is an analytic g2 : C2 -+ GC 
for which LJJ = g2 ’ Qpss -’ is a matrix Bnker,function. Every other matrix Baker,function 
,for q is qf the fbrm ~29 where ~2 E K2. 

Proc?f: Since we have assumed ~0:‘) = @,dn for some g in A(G, v) we have, on C2, 

g4@ = @(s-‘n2 where n2 = nlC2. Therefore gF’@~s-’ = @p)ni’ has Fourier series 

of the form (7) and satisfies (6). Moreover, it is convergent for I< I ? t-’ since n2 is. Clearly 
any other solution of (6) for the same q equals y2P for some y2 : C2 + GC. To satisfy 
(7) y(z) = exp(z<A)yz exp(-z/A) must be of the form Id + O([-‘) for all z. In that 
case (aky)z,o = IkadkA . y2 may only have terms in negative powers of {. Since A is 
semisimple it follows that y2 has no terms of any order which do not commute with A, thus 

~2 E K2. 0 

We will require a result from [ I.51 concerning a space of solutions to the complexz$ed 

Toda equations, which are obtained from (1) by replacing -Z with a complex variable l 
independent of z. Let AE(G~, v) be the subgroup of Ac(GC, v) consisting of boundaries 
of holomorphic maps E + GC and let M denote the left quotient space AE(G~, v) \ 
AC ( GC, v). Now let K C AC ( Cc, u) be the subgroup of boundaries of holomorphic maps 
y : I + GC with y(oo) = Id and yAy_’ = A (this group is abelian since A has abelian 
stabilizer in Cc). K has identity component Ko. Every element of K is of the form (wk, 1)~ 
for some y E KO and some integer k. Hence K/K0 is isomorphic to .Z,,+ 1. Given all this, the 
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following theorem sums up (albeit in slightly different notation) the dressing construction 
described in [ 151. 

Theorem 4. The ahelian group K acts,freely on the left of M and the dressing c~onstruction 
produces the injective horizontal maps in thr commutative diagram: 

M/K0 - (.s2 .\;2 satisfy the complex$ed Toda equations) 

4 J 
M/K --+ (q = aIn(s 

(8) 

Each fibre of the right-hand vertical map, over u point in the image of the bottom hor- 
iwntal map, is of the ,form (s2, ox’. . . . w”.?). Moreover; if the double coset ,fkr some 
g E Ac(GC. v) is mapped, under the top mup, to .s’(:, t) then the double coset ,fiw 
gexp(-:()<A - to<-‘A*) is mapped to .s’(z + ;o, t + to). 

This last fact is very important: it describes the flow governed by the Toda equations on 
the space A4/ Ko, which we think of as a phase space containing a certain class of solutions. 
Each point in the space corresponds to an initial condition, while the : and t flows are gen- 
erated simply by the right action of the 2-parameter abelian group (exp(-:{A - t<-’ A*) : 
,. t E C) (which commutes with K). More generally, let f be the stabilizer of A in 

AE(G~. 11). then its natural action (on the right) on M covers an action on M/Ko, since 
f commutes with K. This generates the ‘higher commuting flows’ in the Toda hierarchy. 
We will have more to say about these f-orbits later (Section 6). 

Note. Beware that in [ 151 the loop algebra is identified with right invariant vector tields on 
the loop group, hence the quotient spaces there are the reverse of those here. Later on it will 
be useful to recognise that we can replace SL,,+l by CL,,+1 in the description of M/K 
and f without changing the theorem (provided we work with loops of winding number 
zero). 

3.1. The monodromy generators 

Now we will use the results just stated to compute the eigenvalues of the monodromy 
matrices for a doubly periodic solution of (1). 

Lemma 2. The diagonal matrix s containing the .solutkms ,sj ,fiw the elliptic Toda Iattke 
( I ) is doubly periodic if and only if q is. Moreover, they have the same periods. 

Prooj Clearly q is doubly periodic whenever s is. Conversely, by Theorem 4 we know 
that if q is doubly periodic then each .sf changes by a multiplier which is some power of UJ 
around each period. However, each .sI is a real-valued, strictly positive function. hence the 
multiplier of .s,i around each period is 1. 0 
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When q is doubly periodic, with periods 61 and &, the matrix Baker function will have 
monodromy: 

p(Z + tj; {) = Mj({)w(Z; {). 

By lemma 2, @c will also have monodromy: 

(9) 

@<(Z+<j)=mj(J)@<. (10) 

By assumption @c comes from the dressing construction, so mj (F) is defined on the annulus 
E. The link between the two is given by 

.ET2"jRT' = Wlj, (11) 

which follows directly from Lemma 1. Notice that (11) will only be defined near C2. 
The necessary and sufficient condition for double periodicity of @t is mj(l)’ = Id 

for some positive integer r. To investigate when this occurs it is sufficient to study the 
eigenvalues of mj ([). Since the eigenvalues are the solutions of the characteristic equation 
det(mj([) - /A . Id) = 0 they should be thought of as functions on a Riemann surface 
which covers the annulus of definition of mj (<). Thus mj( 1)’ = Id only if each of these 
eigenvalues is an rth root of unity at every point lying over 5 = 1. With the help of (11) we 
can give a clear description of this condition, by first examining the eigenvalues of Mi (I). 

Proposition 1. For I< 1 z EC’ we have 

Mj (t) = exp 
i 

-[j(A + ~Uj(-jA-j 

I I I (12) 

for some sequence (uj). Therefore the k-th eigenvalue of A4j (0 is p,i (ok{) where pj ({) = 

eXp(--Cj< + C;"Uj{-j). 

Proo$ When q has periods tj we see that exp(-(j{A)P(z + <j) is also a matrix Baker 
function for q. hence (by Lemma 1) it equals y2P for some y2 E K2. It is easy to verify 
that all elements of K2 are exponentials of power series in negative powers of {A, hence 
Mj is of the form (12). The last statement follows at once from the fact that A may be 
diagonalised into the matrix diag( 1. w, . . . , co”). cl 

Now we will see that /_Lj (I) can be computed using the scalar Baker function defined as 
follows. Let i/$” (z, Z; <) denote the top row of the matrix P-t. The u-equivariance of Cy 
means that 

We may define the scalar Baker function $(z, Z; 5) to be the sum of the entries of $F” 
(that this coincides with the usual definition in [ 11,15,16,2 l] is explained in Section 4). It 
is easily seen that it has Fourier series in < of the form 

$(I) = ev(zC)(l + WC’1). 



1. Mclntosh/Journal qf Geometp and Physics 24 (1998) 223-243 731 

Moreover, since A is a permutation matrix, summing together the entries of the row vector 

@‘o row . ((A)-,’ gives I-j@. It follows from (10) and Proposition 1 that 

$(,7 + tji 0 = q(7.i <)l*,,(C)-'. 

We immediately deduce that p, (0 = $(O: [)$(cj: <)-‘. However, we may always choose 
$ so that $(O: {) = 1 (see Remark below). Using this normalisation (which is the standard 
one in e.g. 1211) we have 

p;(C) = $((,: t)-‘. (13) 

Remarks. That we can normalise I,/J in this way follows from Lemma I since this implies 
that $ is unique up to factors of the form I + O({-I). The Fourier series for $(O: <) is of 
this form hence ti can be normalised to 1 at z = 0. 

4. The spectral curve 

In the final section I will show that when q is doubly periodic it arises from the algebro- 
geometric construction given in [ 15,161 which sits inside the dressing construction of 
Theorem 4. In this section we recall the relevant parts of this construction. The aim here 
is to describe the link between the pair (4, I/J) and a complete algebraic curve X together 
with some other data. 

First we recall from [ 161 that given II + 1 scalar functions q; (,-. t: <) satisfying a system 
of the type 

a;+,j = 4,@j + I+,j+l, at@, = I-‘uj$,j-I (14) 

for some functions qj (z, t) and Uj (;. t), then the compatibility conditions for these equations 
imply the complexified Toda lattice in the form 

i),i), In(Ljj) = -Uj_l + 2Uj - Uj+l (IS) 

(where in both (14) and (1.5) j is counted module II + I). To pass from this form of Toda 
to the earlier form (l), set t = -2) and u,j = .Y~.Y,~~, . 

We can obtain a set of functions $j satisfying ( 14) for some Clj. Uj after fixing a Riemann 
surface X (or. more generally, a complete irreducible algebraic curve) together with a non- 
special line bundle C over X whose degree equals the arithmetic genus p of X. The curve 
X must admit a rational function IT : X + C[FD’ of degree II + I with divisor of the form 
(II + I)( Pa - Pm) for two non-singular points PO and Pm on X. Using rr we define local 
parameters { about PO and t-t about PO0 such that Cn+’ = n (hence <“+I is globally 
defined on X although < will not be). 

Given (X, TT. c) we define the following collection of functions fk. For simplicity. assume 
C is the divisor line bundle for a positive divisor D, of degree p, whose support does not 
include Pa or Pm. For any integer k there is a unique function ,fi((z, t: P) on X with the 
following properties: 
( I) Near Pm the function ,fk has Fourier series of the form <’ exp(z<)( 1 + O(< -’ j). 
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(2) On X - {PO, Pm} it is meromorphic with divisor of poles 5 D. 
(3) At PO the function exp(-t<-‘)fk has an isolated zero of order k. 
This definition is very similar to the definition of the two-point scalar Baker function given 
in [ 111. Indeed, using standard arguments from [ 111 it is easily shown that then + 1 functions 
@j given by (restricting fi to a neighbourhood of Pm and) setting +j = c-j jj satisfy (14) 
where j = 0, . . . , II. The corresponding functions qj and uj are given by 

qj = aj -aj+l 3 Uj = &Uj, 

where @j = exp(z[)( 1 + Uj[-’ + . . .). 
A comparison between (6) and (14) shows that the function @o is precisely the scalar 

Baker function + for functions Uj which provide solutions to the complexified Toda lattice 
(15). To pass to the elliptic Toda lattice we must impose certain reality conditions on X and 
C so that each uj is real-valued and strictly positive along t = -2. First define JR(X) to 
be the identity component of the real subgroup (L E J(X) : p*L 2 L-’ ) of the Jacobian 
J(X) of X. The appropriate conditions are: 

(4a) X must admit an antiholomorphic involution p for which n(p)-’ = rr(p( P)), IT must 
have no branch points on the unit circle and p must fix every point on X over the unit 
circle; 

(4b) C E { C3x(R+) @ L : L E JR(X)} where R+ + p*R+ is the ramification divisor of Jr 
on X - (PO. Pm) (so R+ has degree p). This implies that C is non-special. 

For a discussion of these conditions see [ 181 which corrects an error in [ 15,171. 

Remarks. If (X, rr) satisfies these conditions then clearly so does (X. n’) where ZI’ = 
n” for any positive integer m. I claim that this is the geometry underlying Miyaoka’s 
iterated solutions [20], in which one observes that if SO, . , s,, satisfies (1) for GH,,+) then 

SO , . . . , s,, , . . . , SO , . . . , s,, (taken m times) satisfies (1) for GII,(,,+) ). Indeed one readily sees 
that the functions ,fk are the same in both cases and ,fk+j(,,+i) = nj,fk for 0 5 k 5 n and 
j E Z. 

5. Double periodicity 

In summary, the aim is to prove the following theorem. 

Theorem 5. Doubly periodic Toda so1ution.s arise by satisfying 2p - 4 conditions on the 
2p - 1 free parameters available in the choice of (X, PO, Pm), whenever p > 2. To,further 
obtain superconformal2-tori requires satisfying altogether 2p + 2n - 4 conditions on the 
2p.freeparumeters available in (X, 15). Whenever (X, n) admits a superconformal2-torus 
there will be a p - 2 real dimensional moduli space of tori with the same (X, n). 

In fact the situation is slightly different for tori which possess an S’symmetry (which is 
always the case for p 5 1). These arise from the solution of the o.d.e. Toda equations and 
are discussed at the end of this section. 
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Let us first examine the periodicity conditions. Suppose we have a pair (4. +) arising 
from the data (X. TT, C) satisfying conditions (4a) and (4b) and let (s, or) denote the 
corresponding pair satisfying property (2). 

Proposition 2. @I is doubly periodic if und only I$ (i) q(:) is doubly periodic, (let the 

periods be called (1, &) and (ii) ot everyv point 00. . . 0,, ,fiw ~vhich x( Ok) = I IIY’ htrr~ 
$J (-r<i ; 0~ ) = 1 ,for some positive integer r (MViich rna~ deper7d 011 ,j ). 

Proof Only (ii) requires explanation. If @I is doubly periodic then the monodromy matrices 
m,(c) satisfy m,,(I)” = Id. Each mj([) is I)-equivariant, since Qi is, which implies that 
det(mj (( ) - p. Id) is an analytic function of <“+I and p: we will write this as Fi(<““, p). 
NOW consider the function Fj (n( P). $(tj: P)-’ ), which is defined and analytic on that 
part of X - (PO, Pm) corresponding to ]< 1 2 t. By (1 I) and Proposition I this vanishes for 
I< 1 > c-’ . therefore it vanishes identically wherever it is defined. Thus @(cl ; P).-’ = I at 
all the points P with rr(P) = I. Clearly $I((: P)‘: = $(kc: P) for any integer li (by the 
monodromy property) which gives us the result. 

Conversely, suppose (i) and(ii) both hold, then (i) implies that @i’ i)@, is doubly periodic 
(by Lemma 2) so DC has two monodromy generators m,;(< ). When (ii) holds it follows 
(from the reasoning above) that mi(<)” = Id at e\xey < for which <“+I = 1, 0 

Now I must explain what these conditions mean for the spectral data (X. rr. C). Let us 
consider first Proposition 2 (i). Recall the following facts from [ 1.51. The function q(:. t) 
is actually the restriction of a meromorphic function of infinitely many variables tA for 
which : = tl and t = t-1. These variables are coordinates on the (abelian Lie) algebra 
G = C”‘(E. C): any n E G has Fourier series L((< ) = C tk ck. The homomorphism C; + 

AE(nt,,+l* ~1) which maps ~(1) to a({ A) identifies G with the Lie algebra of f (if we work 
with G’ = CL,,+1 ). When q possesses a spectral curve one has a surjective homomorphism 
L : G + J(X) along the kernel of which y is invariant, i.e. (1 pushes down to a meromorphic 
function on J(X). This map assigns to (I(<) the line bundle ]e”] constructed by taking e” 
as a transition function in punctured discs about both PO and P, on X. The map L factors 
through a surjective linear map 1 : G + H’ (X. 0~ ). 

Now consider the reality conditions required to obtain solutions to ( I ). The real involution 

on Ac(GC, u) corresponds to a(<) H LI(~-’ ) on G: call the fixed point subspace GK. The 
reality conditions (4a) on X are precisely such that the image of GR under L is JR(X). 
Let V = (:< - f<-’ :: E C) C G;K. then y(:. 5) is doubly periodic precisely when 
L : V -+ JR(X) is doubly periodic. When X is smooth of genus 17 = 0. I this is always 
the case (indeed for p = 0 we simply get q = 0. the vacuum solution). For 17 1 2 there 
are two possibilities: (a) L is doubly periodic but not locally injective, i.e. q is invariant 
in some direction, or; (b) the image of V under L is a 2-torus. Case (a) occurs precisely 
when PO + PO0 is a g?, i.e. the divisor of poles of a rational function on X (see the proof 
below). In that case Xis hyperelliptic and we get solutions of the o.d.e. Toda lattice: X is 
(essentially) a Toda curve in the sense of [l9]) and has 1, 5 II (see the discussion below). 
The corresponding harmonic tori (if there are any) will be S’-equivariant. The next result 
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formulates the periodicity conditions in either case. In it HP (X, (3) denotes the image of 
&7~ under 1, which has dual Hj(X, 52) = (w: p*w = --CO]. 

Proposition 3. Let X satisfy condition (4a) and have arithmetic genus p 2 2. The function 
q(z, 2) is doubly periodic if and only ifeither: 
(i) (X, PO, Pm) is a Toda curve and there exists a non-zero a! E Hd (X, Z)for which 

(cx, w) = 0 forall o E Hp”(X, R(-PO - Pm)), (16) 

where ( , ) is the Serve duality between H’(X, 0) and H’(X, Q), or; 
(ii) (X, PO, Pm) is not a Toda curve and there are two independent solutions ~1, cy2 to (I 6). 

The first case presents p - 1 real equations while the second case presents 2p - 4 real 
equations involving only the moduli of X, PO, PW. 

ProoJ The duality between H’(X, 0) and H’(X, Q) comes from the bilinear pairing 

(a([), w) = resp,aw + resp,aw 

between G and H’(X, Q). The subspace Hj(X, a(-PO - Pm)) denotes all those real 
holomorphic differentials which have divisor of zeros at least PO + Pm. This is clearly the 
annihilator of l(V) and has real dimension p - 1 if PO + PO0 is a si, p - 2 otherwise. Hence 
an element (Y of Hd (X, 0) belongs to 1 (V) precisely when it satisfies ( 16). 0 

Now consider the conditions in Proposition 2(ii). Notice that +(cj; P) is unimodular 
over the unit circle in the <‘I+’ -sphere since it provides the eigenvalues for the matrix 
mj([), which is unitary over l{l = 1. Therefore the equations (ii) should be counted as 
‘real’ equations for the real curve/covering (X, p, n) and the ‘real’ divisor D. Since the 
determinant of mj is 1 everywhere, we deduce that 

Therefore these present 2n more real equations to be satisfied. 
Next we must examine how many parameters we have available to satisfy these conditions. 

To write down both sets of periodicity conditions in Proposition 2 we require (X. rr, C). 
However, we will prove shortly that the periodicity conditions on $ are independent of the 
choice of C. Given this result, we only need to count the moduli available in the choice of 

(X, n). 
The pair X, 71 is one of a finite number characterised by the branch divisor of rr 

(see for example [13]). In the case of general position this amounts to a free choice of 
2p distinct branch points rr( PI), . . , n( Pzp) on @P’ - (0, 00) (that the number 2p follows 
directly from the Riemann-Hurwitz formula). For X to admit the involution p these must 
be mapped to each other by n H ii-‘, hence we have at most 2p real parameters. If we 
are only interested in (X, PO, Pa) then we are free to scale 7r by a unimodular constant, 
hence there are only 2p - 1 free parameters. 

It remains to be shown that the periodicity conditions are independent of the choice of C. 



LeImKI 3. Let @n(z; P) denote the scalar Baker ,fimcYion cmrespondiq to the divi.cot 
D and let E be any positive divisor OFT X also of degree p and satisf%ng the .sarne re- 
ality condition. Then .for any period c of L(z) we huve I+!IE([: P) = $n(.$: P) thnqh 
out x. 

Proof: To prove this we must think of +D as a function on GR defined as follows. For each 
a E GR define $o(a: P) to be the unique function on X with the properties: (i) near P, the 
function $n(a; P) has Fourier series of the form exp(a)( I +O(<-I)); (ii) on X - (PO. P%) 
it is meromorphic with divisor of poles 5 D: (iii) exp(--L~)$~~(L~: P) is holomorphic about 
PO and non-zero at PO. This function has divisor of zeros D(a) where D(a) - D lies in the 
divisor class of the degree zero line bundle lying beneath the point I(a) in H ’ (X. 0). Since 
I is a surjective map every divisor class of degree p contains a positive divisor of the form 
D(a) for some (I E GR. In that case E = D(b) for some fixed b E GR. Now we observe 
that. for all LI E GR 

The proof is straightforward. The right-hand side clearly has the same exponential behaviour 
about PO and Px as the left-hand side. Moreover. @o(b) has divisor of zeros E (since the 
reality conditions mean that E is non-special and is therefore the unique positive divisor 
in its divisor class) hence both sides have divisor of poles D on X - (P(l. P,). The re- 
sult now follows from the uniqueness of the Baker function. In particular this means. for 
j = 1,2, 

IlJD(tl + tj) = $ln(6j)+D(ct) 

for ail LI E GR since D(tj) = D. Combining (17) with (18) results in 

$E((I - b + cJ) = $DG=,)$E(~~ - b) 

(IX) 

Setting u = h in this gives us our result, since @E(O) = I. 17 

As a corollary we deduce the final part of Theorem 5, since every superconformal 
2-torus is determined by a collection of data (X. 71. D). By Lemma 3 every point on 
(0~ (D) @ L : L E /R(X)) must give rise to a superconformal 2-torus if 0~ t D) does. 
But JR(X) also contains the 2-parameter subgroup L(V) corresponding to conformal auto- 
morphisms of the 2-torus and we take the moduli space to be the quotient of JR(X) by this 
subgroup. 

Remarks. Elsewhere in [ 181 I have shown that we can combine the two types of periodicity 
condition by introducing the singularisation X, of X obtained by identifying together all the 
points of the divisor II = 00 +. . + 0,, of zeros of r - I. I claim the periodicity conditions of 
Proposition 2 are all satisfied precisely when there are two independent solutions ~1% CQ E 
Hj (X,, Z) to (16) with 52 replaced by s2 (0) - the sheaf of regular differentials on X, 
(see 122. Chap. IV, Section 31). This can be seen directly here in the following way. Set 
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,f’ = +({j; P) which, by the proof of Lemma 3, is holomorphic and non-vanishing on 
X - (PO, Pm). It follows that dflf’-’ is a differential of the second kind with poles only at 
PO. Pm. An equivalent way of expressing Proposition 2(ii) is that 

is rational for each k. By reciprocity this amounts to rationality conditions on the values at 
PO and P, of a vector of differentials spanning H”(sZ(o)). 

Toda Cunvs. We will count the number of parameters available to find tori for generic 
Toda curves with p 2 2. Let (X, PO, Pm) be a Toda curve, then since p preserves PO + Pm 

there is a rational function p with that pole divisor and satisfying p*p = fi: it is unique 
up to real affine transformations. The (unique) hyperelliptic involution B determined by 
PO + P, swaps sheets of p : X + C$’ and therefore 0 commutes with p. Clearly rr CT*IT 
and rr + a,n are functions of p, indeed the former must be a unimodular constant. By 
resealing we obtain Barr = I--’ and rr + cr*rr = b(p) where b(b) = h(p). Hence we have 
a hyperelliptic curve with affine equation 

7r - b(p) + n-’ = 0. 

This curve is birationally equivalent to (and no smoother than) X. Now b(p) = 0 when 
jr2 = - 1. Since both i and -i are not branch points of rr (by condition (4a)) there are 
L?n + 2 distinct points on X where b(p) = 0. and these come in pairs Sk, a(&). Therefore 
b(p) has degree tl + 1 whence the curve above has arithmetic genus n (so p 5 n). Also, 
by condition (4a), every Sk is p-fixed so that b(p) has n + 1 distinct real roots. Since we 
cannot assume b(c() is manic it depends on II + 2 parameters. However, we can scale one 
away if we only want the number of parameters for (X, PO, Pm). Therefore in the generic 
case. p = n, we have n + I real parameters. For (X, rr) we must include the two scaling 
parameters (a unimodular scaling for rr and a real scaling for b(p)) whence we have n + 3 
real parameters. 

To count the periodicity conditions it is best to use the remark above. The Toda solution 
has one trivial period corresponding to at E H ’ (X,, Z) satisfying (a 1, w) = 0 for every 
regular differential on X. Therefore when we replace Q by a(o) in (16) act satisfies p - 1 
of those equations automatically. Since dim H’ (X, R(o - PO - Pa)) = p + n - 2 (for 
p > 1) we have at most n - 1 independent conditions on czt The non-trivial period in the 
Toda solution will correspond to ~2 satisfying the full p + n - 2 equations, so the total 
number of equations between them is 3n - 3 when p = n. Comparing this with the number 
of degrees of freedom n + 3 we seem to have a non-negative net parameter count for n 5 3, 
which is only a slight improvement on the general case, where n 5 2. 

Example. 
(i) When p = 0 the curve X is the Riemann sphere with rational parameter < and rr = 

‘+’ t . The corresponding Toda solution is the vacuum solution: q = 0. The scalar Baker 



function is simply $(z. ?: <) = exp(:C - i< ’ ). It is not hard to show thi> can ha\c 

two independent periods in : at cvcry point o\er <“- ’ = I if and only if/r = I. 2. 3. 5. 
The corresponding 2-tori are the flat tori described in [ 51. 

(ii) Next consider /> = I and II = I. Then ‘Z(L) -- I’0 - P,) has no globnl \c‘ction \incc 

D -I 2/j) + I’ve + I’,. Morcovcr. it i\ easy to hc’c that H,! (X,,. l) 2 b’. thercforc the 

periodicity conditions arc non-trivially satislicd. The harmonic tori arc of cour\c the 

Gnus4 maps of Dclauncy \urfaccs in R’. 

6. ‘Ibda fields which possess a spectral curve 

In this vAon we will see that every Toda solution of linite type posscssc~ ;I \pectral 

curve of the type required. It follows that every \upcrconformal 2-torus comes from the 

construction above. First it is shown that cvcry solution of’tinitc type has ;1 tinite-dimcnsion~rl 

f-orbit (in the set-up of Theorem 4) and then it is shown that e\.ery finite-dimensional I‘- 

orhit in .M/ K is identifiable with the Jacobian of ;I spectral curve. 

Following [II wc obscrvc that on the finite-dimensional manifold A,,, (recall Section 7 I 
UC can detine two real o.d.c.‘s 

i) jj = [ rj. i ( z‘ tj,,, + I/,,, - I 1 I. a,) = 1~1. -i(C ’ tj ,,, + ))I ,,, )I. II’)) 

u,hcrc each (t. II) in A,,, is idcntifed with the Laurent polynomial 11. Thc\e o.d.c.‘\ arc 

in fact Hamiltonian and their Hows commute. Together the pair has ;I tinitc-dimensional 

space of Autions (,I. ‘1) : IX’ + A,,,. each detcrmincd uniquely hy its initial condition\. 

Given ;I doubly periodic solution matrix .v for the elliptic Toda equations Thcorcm 3 \;I!\ 

there is ;I solution rl to ( 19) satisfying ir],,, = --.v-’ A.v and it?,,, 1 = -i1 In .A. In particular r/ 

determines s uniquely up to ;I scaling (indeed. up to ;I scaling by some power of (I). in 1 ic\% 

of Thcorcm 1). Hence only a finite-dimensional f;mlily of doubly periodic solution\ of the 

Toda equations may correspond to each 1~ = I mod (II + I ). Kow \vc‘ pro\:c: 

PRX$ It is enough to show that the /‘K-orbit of .V i\ tinite-dimensional. whcrc I‘K i\ rCA 

subgroup of I‘ with respect to the real involution on A(.(G“. I,). By Theorem 4 the /‘K-Orbit 

of .7 corresponds to a smooth family .s(:. .y. t) of’ solutions to the elliptic Toda cquation5. 

paramctcriwd by real variables correspondin, 0 to the higher Rows in the Toda hierarchy. 

Since all these Hews commute ( fR is ahclian) every solution in this family is also douhl~ 

periodic. Hut according to the discussion above each solution in this family corresponds to 

;I solution 01’ the o.d.e’s (19) above. for some fixed 111 E I mod (II + I ). Since the spncc 01’ 

these solutions is finite-dimensional so is the family .s(:. 5. t ). It t’ollows that the /it-whit 

of .Y mu\~ also he tinitc-dimensional. .i 
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Now we will prove the principal result about solutions to the cornplexified Todaequations. 

Theorem 6. Everyjinite-dimensional r-orbit in M/K is identifiable with the Jacobian 
qf a complete algebraic curve qf the type described earlier: 

One then knows from [ 15,161 that this curve is precisely the spectral curve in the sense 
used here. To prove this it is easiest to make use of the note after Theorem 4 and work 
with GC = CL,,+) throug hout. The idea is to identify M with an infinite-dimensional 
Grassmanian analogous to that used by Se&al and Wilson [21]. Define 

H, = {.f E L2(C, c”+‘): ,f (w() = .f(t)o-‘). 

where we think of elements of @“+’ as row vectors. The group Ac(GC, u) acts on this 
space by g o f = f’s_‘. Define HE to be the subspace of H, consisting of boundaries of 
holomorphic functions ,f : E + @“+l and define 

Gr = (8-l o HE: g E Ac(GC, u)) 

then we clearly have Gr 2 M. Now let A be the (abelian Lie) algebra of real-analyiic 
maps C + @. This acts on H, through its isomorphism with the centraliser of CA in 
A,-(ilC, u) (this is just the extension of the isomorphism of 4 c A with the Lie algebra of 
f). Specifically, for a({) E A and f’ E H, we define a o f = -f a(gA): this makes Hn 
into an d-module. 

The reason for introducing A is that to each W E Gr we can associate the subalgebra 

dw = {a E A: a o W c W). 

Ultimately we will show that this is (essentially) the coordinate ring of the affine curve 
X - (PO, Pm) whenever the corresponding point in M/K has finite-dimensional f-orbit. 

Let -41 denote the subalgebra of boundaries of functions holomorphic on I and vanishing 
at < = co. It is not hard to see that K = exp(d,) and A = A, @ 6. Therefore r-orbits in 
Gr/K are identical to exp(d)-orbits. 

Lemma 5. For W E Gr let [W] denote its K-orbit as a point of Gr/ K and let 1~~1 denote 
the isotropy group of [ W] for the action of exp(d) on Gr/K. Then the Lie algebra c?fZlwl 
is A, @ dw. 

ProojI An element a of A belongs to the Lie algebra of Ztwt precisely when there exists, for 
each t E C, some b, E A, depending smoothly on t such that exp(ta - b,) W = W. Taking 
derivatives at t = 0 shows that a E Al + Aw. Moreover, it is clear from this argument 
that AI + Aw is contained in the Lie algebra of Ztwj. Now we recall from [ 151 that K acts 
freely on M so that ,A, fl dw = (0). 0 

As a consequence we have the exact sequence of abelian Lie algebras 

O+d,@dw-+ A -+ X[Wl --f 0 
(b, a) H a-b (20) 
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The heart of the proof of Theorem 6 is to show that KIWI is finite-dimensional precisely 
when this sequence equates Z[wl with H’(X, 0) for the completion of the affine curve 
‘Spec(&)‘. This result can be found in [ 171 but it will help to summarise the proof 
here. 

To make proper sense of Spec(Aw ) we follow [21] and work with the subalgebra A”‘: 
of functions of finite order. An element (~(1, a~) E d has ,finite order if CI~(<) extends 
meromorphically to a neighbourhood of < = 0 und u? extends meromorphically to a 
neighbourhood of C-’ = 0. Likewise, we use W a’f to denote the finite-order elements ot 
W c H. Finally, we let C c A denote the subalgebra of functions of {“+I only. It is 
readily shown that Wa’g is a torsion free A’$ -module from which we deduce that A$ is a 
finitely generated (free) Ca’g -module with rank m 5 n + I and. moreover. it ia an integral 
domain. 

It follows that there is a finite, surjective morphism r : Spec(A$) + Spec(C”‘“). Since 
C”lZ z @[t!z+l, <-“-‘] it may be thought of as the coordinate ring of the <‘I+‘-sphere 
punctured at 0 and M, hence we have a finite degree covering of this punctured sphere. 
Clearly the degree of this covering can be at most II + I, By the remarks above Spec( A$) 
is irreducible and may be completed by adding non-singular points PO and P, over 0 
and 3~. respectively. We call the completion X. These added points are determined by the 
valuations on the fraction field of Aa? corresponding to poles of CII and (12, respectively. 

for ((11. ~2) E A$. Using these valuations one shows that the vector space 3-tlwl is finite- 

dimensional if and only if the C”‘g-module A$ has rank II + I. In that case the covering 
il :X + $ behaves like < H cn+’ about PO so that A, corresponds to the algebra of 
holomorphic functions in a neighbourhood of PO and Pw (vanishing at P,). It follows that 
the sequence (20) computes H’(X, 0). 

Now Theorem 6 follows from the observation that [W] uniquely determines (and is 
determined by) the data (X. n. C) where C is a line bundle over X (or. if X is singular. 
perhaps merely a rank 1 torsion free coherent sheaf). The bigraded A$module Waif 
determines C equipped with trivialisations over PO and P=: passing to [ W] corresponds 
to discarding these trivialisations. From [ I.51 we know that the correspondence between 
these two identifies the exp(A)-action with the /(X)-action on the Picard variety of X (or. 
more generally. the moduli space of rank 1 torsion free coherent sheaves over X 1. If C is a 
line bundle we know immediately that its J(X)-orbit is identifiable with J(X) itself. More 
generally, the J(X)-orbit is identifiable with J(X’). where X’ is the least singular curve 
from which C could come by direct image. However. the dimension of J(X’) must equal 
dim ?Y[wl = dim J(X), hence X z X’. 
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Appendix A. Spectral curves and Killing fields 

This appendix explains the connection between the spectral curve used here and altema- 
tive definition given in [ 121. There one finds a concrete construction for an algebraic curve 
given a harmonic 2-torus in a symmetric space, and it is clear how this adapts to our case. 
As in [7], the emphasis is placed on polynomial Killingjelds. So my first task is to explain 
how these fit into the picture here. 

Let us fix a superconformal 2-torus in CPn with extended Toda frame @, and set cx = 
0-t d@ (we will drop the subscript 5‘ in this discussion). By Theorem 3 we may always 
choose @ to be given by a factorisation K@ co) = @x for some s E A(G, u) (where x takes 

values in A~.D). We will say an element of Ac(RC, u) hasfinite order if its component in 
AE(~~, u) (given the usual splitting) is a Laurent polynomial in <. Throughout this section 
we work with gC = i g ,,+, A formal Killing field for CI is a loop algebra-valued analytic 
function q(z. Z) which satisfies 

d;rl = ]v, al 64.1) 

and is of (bounded) finite order for every z, Z. Notice that q is not restricted to be real 
here (i.e. with respect to the antiholomorphic involution on Ac(clC, u)). We will say q is a 
polynomial Killing field whenever it takes values in A~(kf, u) (which is precisely the case 
for which it is a Laurent polynomial, by our definition). One of the principal results of [7], 
when adapted to this context (as in [4]), shows that the existence of a formal Killing field 
implies the existence of real polynomial Killing fields satisfying the extra condition in (5) 
which guarantees that @J is of finite type. 

It is elementary to show that the formal Killing fields form a Lie algebra. In fact they 
form a commutative Lie algebra isomorphic to Aqa’s, the subalgebra of finite-order elements 
in A. Here we view A as the centraliser in Ac(nC, u) of <A. Under this isomorphism, the 
polynomial Killing fields correspond to dalg w , where W now denotes the coset A E: (Cc, v) .g. 
This isomorphism is given by 

Adx : A+ -+ {formal Killing fields) 

u I-+ n = Adx N. 

In order to prove these statements it is useful to have the 
Qj(u)-t d@(o) 

Lemma A.l. Let u(z. 2) be a formal Killing$eldfor ryCo), 
du = 0). 

(A.2) 

following lemma. Let a(O) = 

Then u E da’g (in particular 

ProojI Write u = (at, ~2). We will show that dat = 0 and ut commutes with A. A similar 
procedure will also work for ~2, proving the lemma. 

Let us write at = Ck, utj<- j. From the Killing field equation we see that 

aalk = 0, amtj = [A. ~lj-l], au,,,, = [al.;, A*]. [alk, A*] = 0. (A.3) 



where j < k. The proof requires the observation that the image and kernel of AdA equal 

those of AdA* and these intersect only on (0). The latter follows from the fact that A 
is semisimple. Using this observation it follows that %I,, = 0, and therefore alk is con- 
stant and commutes with A. This means that the equations above are also true with ,4 
replaced by k - I. By induction we see that for every j, UI , is constant and commute\ 
with A. c 

Now let us prove: 

Proposition A.l. The map (A.2) is NII isomorphian of‘ Lie rrlgehrus bthich idrntifirs A$ 
with the subalgebra of polymmial Killing,field.~,fiw CY. 

Prt,c$ Using x = @-‘g@(O) we see that. for each u E A. Adx (I = Ad@-’ rl() where 
~0 = Adg LI is independent of ;. ,7. Therefore 

d(Arlx N) = Ad@-’ ([@ d@-‘, qo] + dqo) = [Adx . (1. al. (A.3) 

Moreover, Adx u has finite order whenever u does, since x extends holomorphically into 
I. Conversely. given a forma1 Killing field 11 one easily shows that d(Ad@ 17) = 0 and 
therefore d(Ad@ (‘) .(I) = Ofora = Adx-’ q. When this is expanded we see that CI is a 
formal Killing held for (Y (‘I By Lemma A. 1 this implies a E Aa’g. 

Now let us see that 9 takes values in A E (!I’. u)ifandonlyifcr E A’$.Weknowo E AC\ 
precisely when WC’” = W for all t E C. But since e”’ commutes with 0(‘)) this is equivalent 
to AE(G’, u)xe’” = AE(G~, v)x. Therefore u E AW if and only if exp(tAdx (I) takes 
values in AE(G~. v) for all t, which proves the result. Cl 

Notice that since x is real a Killing held q is real if and only if u is. 
It is now possible to refer to the commutative algebra of polynomial Killing tields. where 

the ring product is ordinary matrix multiplication. However, since each Killing field is ;I 
function of :, Z it is more convenient to look at this as a parameterised family R(:. 5) 
of commutative algebras, each isomorphic to A, a’s In particular, we will use R to denote 
R(O.0): the algebra of polynomial Killing fields evaluated at ;. 5 = 0. 

The spectral curve in [ 121 is defined as follows. Set 

Y = ((t. [v]) E @* x CP” : qo(<)v = pu. Vrju E R. 3y E C). 

The spectral curve is then defined to be the compactification Y of Y in CP’ x CP”. Since 
elements of R are simultaneously diagonalisable we see that Y is independent of the choice of 
~0. However, at first sight it is not clear that this map is well-detined throughout Y,,: problems 
might arise at points where the eigenspaces coincide. In [ 121 attention was restricted to the 
generic case, where eigenspaces coincide at worst in pairs, i.e. where the ramification points 
of Y over C:P’ (under projection on the first factor) are all simple. 

Now let us see the connection between X and Y. The I)-equivariance of qo induces a fixed- 
point free automorphism (which we shall also call 11) on Y inherited from the automorphism 
(<, [u]) H (WC. [au]) of @* x CP”. It can be shown quite easily that R is the coordinate ring 
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for Y/V, since R is ring of all u-equivariant regular endomorphisms of the ‘eigenspace line 
bundle’ over Y (this is the pull-back of the tautological line bundle over CP’“). Therefore 
X,J z Y/u and in fact X zz Y/V so that ? is an unramified cover of X. Indeed it is this curve 
which Hitchin uses in [ 141. This explains why he only finds harmonic maps into @PI for 
curves of odd genus: the genus of an unramified double cover of X is 2p - 1. One knows 
(from e.g. [22]) that the subgroup J(Y),, of u-fixed points in J(Y) is a finite cover of J(X) 
with covering group Zn+ 1. It represents the u-equivariant line bundles of degree zero over 
r. It was shown in [ 151 that, whereas J(X) is identifiable with a finite-dimensional orbit 
in M/K, this group J(Y)” is identifiable with the corresponding orbit in M/ Ko, which is 
the dressing space of Toda solutions. 
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